RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, JANUARY 2015

FIRST YEAR

Date : 05/01/2015 Time : 11 am - 3 pm

MATHEMATICS (Honours) Paper : |

Full Marks : 100

[Use a separate Answer Book for each group]

$\underline{Group} - \underline{A}$

(Answer <u>any five</u> questions from <u>Q.No. 1 - 8</u>)	5×5]
---	------

1.	a)	Let A be a nonempty subset of \mathbb{R} . Prove that there does not exist any surjective mapping $f: A \to \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the power set of A.	[3]
	b)	Show that the number of different reflexive relations on a set of n elements is 2^{n^2-n} .	[2]
2.	Fin	d the smallest equivalence relation on \mathbb{R} containing the line $x - y = 1$.	[5]
3.	Pro	we that every group of order less than 6 is commutative.	[5]
4.	Let	G be a group in which $(ab)^3 = a^3b^3$ for all $a, b \in G$. For $n \in \mathbb{N}$, define $K_n = \{x^n : x \in G\}$.	
	Sho	pow that : a) $K_n \le G$ for $n = 1, 2$	[2]
		b) $K_n \leq G \text{ for all } n \in \{2^i 3^j : i, j \in \mathbb{N}\}$	[3]
5.	a) b)	For $p,q \in \mathbb{N}$ show that the smallest subgroup of \mathbb{Z} containing $p\mathbb{Z} \cup q\mathbb{Z}$ is $\ell\mathbb{Z}$, where $\ell = gcd(p,q)$. Show that $[\mathbb{Z}:m\mathbb{Z}] = m $ for any $m \in \mathbb{Z} \setminus \{0\}$.	[2] [3]
6.	Let Fine	 G be a cyclic group of order 144. d: a) the number of subgroups of G, b) the number of subgroups of G of order 12 c) the number of elements with order 12 d) [G: H], where H≤G with H =12. 	
	Fur	ther, if G be non-commutative, show that G has an element of order 3. [5	5×1]
7.	Stat	te Lagrange's Theorem on finite groups. State and prove its converse in case of cyclic groups. [1	+4]
8.	a)	Prove that every element in the alternating group (A_n, \cdot) is a product of 3-cycles.	[3]
	b)	Find the order of $(1 \ 2 \ 3 \ 4) \cdot (5 \ 6 \ 7)$ in S ₇ .	[2]
		(Answer <u>any five</u> questions from <u>Q.No. 9 - 16</u>) [5]	5×5]
9.	a)	Let S be a bounded subset of \mathbb{R} with sup S = M and inf S = m. Prove that the set $T = \{x - y : x \in S, y \in S\}$ is a bounded set and sup T = M - m.	[3]
	b)	Let S be a nonempty subset of \mathbb{R} which is bounded below and $a = \inf S$. If $a \notin S$, prove that a is a limit point of S.	[2]
10.	a)	A real number α is said to be algebraic if there are integers a_0, a_1, \dots, a_n , not all zero, such that	
		$a_0 + a_1\alpha + + a_n\alpha^n = 0$. Prove that the set of all algebraic numbers in \mathbb{R} is countable.	[3]
	b)	Show that the set of all circles in the plane \mathbb{R}^2 having rational radii and centres with rational co-ordinates is countable.	[2]
11.	a)	Prove or disprove : "If A, B are open sets in \mathbb{R} , then so is $A+B=\{a+b:a\in A, b\in B\}$.	[3]
	b)	Find all $A, B \subseteq \mathbb{R}$ satisfying $A^0 = \overline{B}$.	[2]

- 12. Show that the sequence $\{u_n\}_{n \in \mathbb{N}}$ defined by $0 < u_1 < u_2$ and $u_{n+2} = \sqrt{u_{n+1}u_n}$ for $n \ge 1$, converges to $\sqrt[3]{u_1u_2^2}$. [5]
- 13. State and prove Bolzano-Weirstrass' Theorem on the existence of convergent subsequences of a bounded sequence in R.
 Is the theorem valid if we drop the assumption on boundedness of the sequence? [4+1]
- 14. a) If $\{x_n\}$ be a null sequence, prove that $e^{x_n} \rightarrow 1$.
 - b) Define a Cauchy sequence in \mathbb{R} . Give an example to show that a real sequence $\{x_n\}$ need not be Cauchy even if $|x_n - x_{n+1}| \rightarrow 0$ as $n \rightarrow \infty$. [1+1]
- 15. a) Let $S \subseteq \mathbb{R}$ be a bounded set. Describe the smallest closed interval containing S. [3]
 - b) Give an example of a sequence with countably infinite number of subsequential limits. [2]
- 16. a) Prove that $\lim_{x\to 0} \cos \frac{1}{x}$ does not exist.
 - b) Let I = (a,b) be a bounded open interval and $f: I \to \mathbb{R}$ be monotone decreasing function on I. If f is bounded above on I, then prove that $\lim_{x \to a^+} f(x) = \sup_{x \in (a,b)} f(x)$. [3]

<u>Group – B</u>

(Answer <u>any three</u> questions from <u>Q.No. 17 - 21</u>) [3×5]

- 17. A triangle has the lines $ax^2 + 2hxy + by^2 = 0$, for two of its sides and the point (p,q) for its orthocentre. Show that the equation of its third side is $(a+b)(px+qy) = aq^2 + bp^2 - 2hpq$. [5]
- Lines are drawn through the foci of an ellipse perpendicular respectively to a pair of conjugate diameters and intersect at Q. Show that the locus of Q is a concentric ellipse. [5]
- 19. If g be a variable tangent to the conic $\frac{\ell}{r} = 1 e \cos \theta$, show that the locus of the foot of the perpendicular from the pole on g is the circle $(e^2 1)r^2 + 2\ell er \cos \theta + \ell^2 = 0$. [5]
- 20. Reduce the equation $3(x^2 + y^2) + 2xy = 4\sqrt{2}(x + y)$ to its canonical form. Name the conic and find the eccentricity of the conic. [3+1+1]
- 21. Find the locus of the poles of the chords of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which subtend right angles at the centre of the ellipse.

(Answer any two questions from
$$Q$$
.No. 22 - 24) [2×5]

- 22. ABCD is a parallelogram and E is the mid-point of CD and F is a point on AE such that $AF = \frac{2}{3}AE$. Show, by vector method, that F lies on the diagonal BD and $BF = \frac{2}{3}BD$. [4+1]
- 23. a) A force of magnitude 21 unit along $2\hat{i} + \hat{j} 2\hat{k}$ is acted on a particle at A(1,3,6) and displaces it at B(3,6,9). Find the work done. [2]
 - b) Show that an arbitrary vector \vec{v} can be expressed in terms of any three non-coplanar vectors $\vec{a}, \vec{b}, \vec{c}$ according to $\vec{v} = \frac{[\vec{v}, \vec{b}, \vec{c}]}{[\vec{a}, \vec{b}, \vec{c}]} \vec{a} + \frac{[\vec{v}, \vec{c}, \vec{a}]}{[\vec{a}, \vec{b}, \vec{c}]} \vec{b} + \frac{[\vec{v}, \vec{a}, \vec{b}]}{[\vec{a}, \vec{b}, \vec{c}]} \vec{c}$. [3]

[5]

[3]

[2]

24. Find the shortest distance between two lines, one of them passes through A(6,2,2) and parallel to the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ and the other through C(-4,0,-1) and parallel to the vector $3\hat{i} - 2\hat{j} - 2\hat{k}$. Find the points where the lines meet the shortest distance line. [4+1]

(Answer <u>any five</u> questions from Q.No. 25 - 32) [5×5]

[5]

- 25. Show that the general solution of the equation $\frac{dy}{dx} + Py = Q$ can be written in the form y = K(u-v) + v, where K is a constant and u & v are its two particular solutions. [5]
- 26. Find an integrating factor of the differential equation $(y^2 + 2x^2y)dx + (2x^3 xy)dy = 0$ and hence solve it. [5]
- 27. Using the transformation u = x + y, $v = x^2 + y^2$, reduce the following differential equation into Clairaut's form and hence solve it: $(x^2 + y^2)(1+p)^2 - 2(x+y)(1+p)(x+yp) + (x+yp)^2 = 0$, $p = \frac{dy}{dx}$. [5]
- 28. Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}$. [5]
- 29. Solve by the method of undetermined coefficients the differential equation

$$(D^{2}-3D)y = x + e^{x} \sin x, \left(D \equiv \frac{d}{dx}\right).$$
[5]

30. Solve:
$$(1+x+x^2)\frac{d^3y}{dx^3} + (3+6x)\frac{d^2y}{dx^2} + 6\frac{dy}{dx} = 0.$$
 [5]

31. Find the family of curves cutting the family of parabolas $y^2 = 4ax$ at 45° .

32. Solve:
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x)$$
 [5]

_____ X _____